Size Ramsey numbers of forests versus double stars and brooms

Yuan Si

Qinghai Normal University, Xining, China; and Georgia State University, USA

10 May, 2021

- Introduction
 - Size Ramsey number
 - Double stars
 - Brooms
- 2 Main results
 - Matchings versus double stars and brooms
 - \bullet P_3 versus double stars and brooms

- Introduction
 - Size Ramsey number
 - Double stars
 - Brooms
- 2 Main results
 - Matchings versus double stars and brooms
 - P_3 versus double stars and brooms

- Introduction
 - Size Ramsey number
 - Double stars
 - Brooms
- 2 Main results
 - Matchings versus double stars and brooms
 - \bullet P_3 versus double stars and brooms

Basic definition

• We assume all graphs are finite, undirected and simple. For a graph G, the vertex set, edge set, order and size of G are denoted by V(G), E(G), v(G) and e(G), respectively. The neighborhood, $N_G(v)$ or N(v) for short, of a vertex v of G is the set of vertices adjacent to it. The degree, $\deg_{C}(v)$ or $\deg(v)$ for short, of a vertex v of G is the number of edges incident to it. The minimum degree of G, $\delta(G)$, is the smallest of the degrees of vertices in Gand the maximum degree, $\Delta(G)$, of G is the largest of the degrees of the vertices in G. For any subset X of V(G), let G[X] denote the subgraph induced by X; similarly, for any subset F of E(G), let G[F] denote the subgraph induced by F. We use G-X to denote the subgraph of G obtained by removing all the vertices of X together with the edges incident with them from G. If $X = \{v\}$, we simply write G - v for $G - \{v\}$.

Size Ramsey number

• If G and H are two graphs, we write $F \to (G, H)$ to denote that G or H is a monochromatic subgraph of F in every 2-coloring of the edges of F. The $size\ Ramsey\ number\ \widehat{r}(G, H)$ of two graphs G and H, introduced by Erdös et al., is defined as

$$\widehat{\mathbf{r}}(G, H) = \min\{e(F) : F \to (G, H)\}.$$

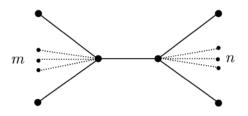
Basic proof idea

- Upper bound: Construct a graph F such that $F \to (G, H)$, then e(F) is the upper bound of $\widehat{r}(G, H)$.
- Lower bound: Any graph with a given number of edges can find a red/blue edge-coloring such that these graphs contain neither a red copy of G nor a blue copy of H.

- Introduction
 - Size Ramsey number
 - Double stars
 - Brooms
- 2 Main results
 - Matchings versus double stars and brooms
 - \bullet P_3 versus double stars and brooms

D(m, n)

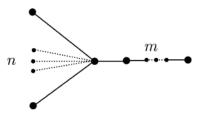
A *double star* is a graph with two stars and an edge connecting their centers.



$$v(D(m,n)) = n + m + 2, e(D(m,n)) = n + m + 1, \Delta(D(m,n)) = \max\{n + 1, m + 1\}.$$

- Introduction
 - Size Ramsey number
 - Double stars
 - Brooms
- 2 Main results
 - Matchings versus double stars and brooms
 - P_3 versus double stars and brooms

A *broom* is a graph which is a path with a star at one end.



$$v(B(m, n)) = n + m + 1, e(B(m, n)) = n + m, \Delta(B(m, n)) = n + 1.$$

- Introduction
 - Size Ramsey number
 - Double stars
 - Brooms
- 2 Main results
 - Matchings versus double stars and brooms
 - \bullet P_3 versus double stars and brooms

- Introduction
 - Size Ramsey number
 - Double stars
 - Brooms
- 2 Main results
 - Matchings versus double stars and brooms
 - P_3 versus double stars and brooms

The subgraph induced by the red edges

Fact 1

To avoid red $2P_2$, the subgraph induced by the red edges in F is a star or a triangle.

$\widehat{\mathbf{r}}(sP_2,D(m,n))$

Theorem 2.1

For $n \geq m \geq 2$ and $s \geq 2$,

$$s(n+1) + m \le \hat{\mathbf{r}}(sP_2, D(m, n)) \le s(n+m+1).$$

Upper bound of $\widehat{\mathbf{r}}(sP_2, D(m, n))$

Construct a graph F such that $F \to (sP_2, D(m, n))$:

$$e(sD(m, n)) = s(n + m + 1).$$

Let F be a graph of size at most s(n+1) + m - 1 and containing a copy of D(m, n). Next use induction on s: Assume s = 2.

- $\Delta(F) \leq n$: no D(m, n) copy.
- $\Delta(F) \ge n+1$: Take a vertex v of maximum degree, and color the edges incident to v red and the other edges blue.

Suppose the conclusion holds for s-1. Again, take a vertex v of maximum degree. Denote F'=F-v. Then

$$e(F') \le s(n+1) + m - 1 - (n+1) = (s-1)(n+1) + m - 1.$$

Then by inductive hypothesis, there is a red-blue coloring of E(F') such that there is neither a red copy of $(s-1)P_2$ nor a blue copy of D(m, n). Now keep this coloring, and further color the edges red incident to v, then we get the red-blue coloring which we want.

$\widehat{\mathbf{r}}(2P_2,\overline{D(1,n)})$

Theorem 2.2

For $n \geq 3$,

$$\widehat{\mathbf{r}}(2P_2, D(1, n)) = 2n + 4.$$

By Theorem 2.1, we have $\widehat{\mathbf{r}}(2P_2,D(1,n)) \leq 2n+4$. Next we show $\widehat{\mathbf{r}}(2P_2,D(1,n)) \geq 2n+4$.

Let F be a graph of size 2n+3 and containing a copy of D(1, n). Take $w \in V(F)$ such that $\deg(w) = \Delta(F)$.

Let F' = F - w.

- $\Delta(F) \leq n$: no D(1, n) copy.
- $\Delta(F) \ge n+2 : e(F') < e(D(1,n))$, thus no D(1,n) copy.
- $\Delta(F) = n + 1$: need further discussion.

Thus assume that $\Delta(F) = n + 1$. Then e(F') = n + 2 = e(D(1, n)).

- $F' \ncong D(1, n)$: we have done.
- $F' \cong D(1, n)$: need further discussion.

Assume $F' \cong D(1, n)$.

Let u and v be the n-center and 1-center, respectively.

• $N(w) \cap V(F') = \emptyset$: color one edge of F' red and the other edges blue.

Thus assume $N(w) \cap V(F') \neq \emptyset$.

• $v \in N(w) \cap V(F')$: color the edges incident to v red and color the other edges blue.

Thus assume $v \notin N(w) \cap V(F')$.

• $u \in N(w) \cap V(F')$: color the edge uw red and color the other edges blue.

Thus assume $u \notin N(w) \cap V(F')$.

• $\exists x \in N_{F'}(u)$ such that $x \in N(w) \cap V(F')$: color ux and wx red and color the other edges blue.

Thus assume no neighbor of u belong to $N(w) \cap V(F')$.

• Denote by v_1 the other neighbor of v than u in F' such that $N(w) \cap V(F') = \{v_1\}$: color vv_1 and wv_1 red and other edges blue.

And such coloring is what we want.

$\widehat{\mathbf{r}}(sP_2, D(1, n))$

Next by an induction on s, we have the following result:

Lemma 2

Assume F is a graph of size s(n+2)-1 where $s \ge 2$ and $n \ge \lceil (s^2+3s-2)/2 \rceil$. Denote by W the set of vertices of degree at least n+1 in F. If $|W| \ge s$, then |W| = s.

Theorem 2.3

For $s \ge 2$ and $n \ge \lceil (s^2 + 3s - 2)/2 \rceil$,

$$\widehat{\mathbf{r}}(sP_2, D(1, n)) = s(n+2).$$

Skipping the proof.

$\widehat{\mathrm{r}}(2\overline{P_2},\overline{D(2,2)})$

Theorem 2.4

$$\widehat{\mathbf{r}}(2P_2, D(2,2)) = 10.$$

Skipping the proof.

Problem of $\widehat{\mathbf{r}}(2P_2, D(n, n))$

Problem 2.1

For n > 3,

$$\widehat{\mathbf{r}}(2P_2, D(n, n)) = ?.$$

$\widehat{\mathbf{r}}(2P_2, B(m, n))$

Theorem 2.5

For $m \geq 4$, $n \geq 1$,

$$\widehat{\mathbf{r}}(2P_2, B(m, n)) \le 2n + 2m - 2.$$

For m > 3, n > m + 2,

$$\widehat{\mathbf{r}}(2P_2, B(m, n)) \ge 2n + m + 2.$$

Upper bound of $\widehat{\mathbf{r}}(2P_2, B(m, n))$

Construct a graph F such that $F \to (2P_2, B(m, n))$: let F be a graph obtained from a 2m-cycle $v_1v_2 \dots v_{2m}$ and two stars $K_{1,n-1}, K_{1,n-1}$ with centers u, v, respectively, by identifying u_1, v_1 and u_2, v_m (that is $u_1 = v_1$ and $u_2 = v_m$), which show in Figure 1(a).

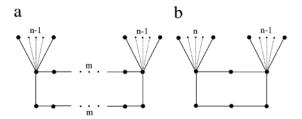


Figure 1: Graphs for Theorem 2.5 and Corollary 2.1.

Let F be a graph with at most 2n + m + 1.

We can assume that e(F) = 2n + m + 1.

Take $w \in V(F)$ such that $deg(w) = \Delta(F)$.

Let
$$F' = F - w$$
.

- $\Delta(F) \leq n$: no B(m, n) copy.
- $\Delta(F) \geq n+2$: e(F') < e(B(m,n)), thus no B(m,n) copy.
- $\Delta(F) = n + 1$: need further discussion.

Suppose $\Delta(F) = n+1$. Let s be the number of vertices of degree n+1.

Claim 3

$$s \leq 2$$
.

Proof.

Assume, to the contrary, that $s \ge 3$. Then there exist three vertices, say u_1, u_2, u_3 , such that $deg_F(u_i) = \Delta(F) = n+1$ for i=1,2,3, and hence there are at least $3(n+1)-3 \ge 2n+m+2 > e(F)$, since $n \ge m+2$, a contradiction.

Suppose s = 2. Then there exist two vertices $u, v \in V(F)$ such that $deg_F(u) = deg_F(v) = \Delta(F) = n + 1$.

- $uv \in E(F)$: color the edge uv red, and then color the other edges blue.
- $uv \notin E(F)$ and $N_F(u) \cap N_F(v) \neq \emptyset$, then $\exists x \in N_F(u) \cap N_F(v)$: color the edges ux, vx red, and then color the other edges blue.
- $uv \notin E(F)$ and $N_F(u) \cap N_F(v) = \emptyset$: note that e(F u v) = m 1 and $F v \cong B(m, n)$, $F u \cong B(m, n)$, then these m 1 edges must form a path. We color one edge from this path red, and then color the other edges blue.

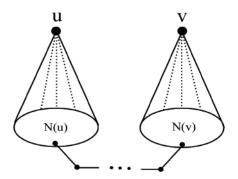


Figure 2: Graph for the Proof of Theorem 2.5.

$\widehat{\mathbf{r}}(2P_2,B(3,n))$ and $\widehat{\mathbf{r}}(2P_2,B(4,n))$

Corollary 2.1

For $n \geq 5$,

$$\hat{\mathbf{r}}(2P_2, B(3, n)) = 2n + 5.$$

Corollary 2.2

For $n \geq 6$,

$$\hat{\mathbf{r}}(2P_2, B(4, n)) = 2n + 6.$$

- Introduction
 - Size Ramsey number
 - Double stars
 - Brooms
- 2 Main results
 - Matchings versus double stars and brooms
 - \bullet P_3 versus double stars and brooms

The subgraph induced by the red edges

Fact 4

To avoid red P_3 , the subgraph induced by the red edges in F is a matching.

$\widehat{\mathbf{r}}(P_3, D(m, n))$

Theorem 2.6

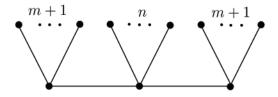
For $n \geq m \geq 2$,

$$n + 2m + 1 \le \widehat{\mathbf{r}}(P_3, D(m, n)) \le n + 2m + 4.$$

Upper bound of $\widehat{\mathbf{r}}(P_3, D(m, n))$

Construct a graph F such that $F \to (P_3, D(m, n))$:

Let uvw be a path of order 3, and F be a graph obtained from three stars $K_{1,m+1}$, $K_{1,n}$ and $K_{1,m+1}$ by identifying the center of $K_{1,m+1}$ and u, the center of $K_{1,n}$ and v and the center of $K_{1,m+1}$ and w, respectively.



Skipping the proof of lower bound.

Remark

From Theorem 2.6, $3n + 1 \le \widehat{\mathbf{r}}(P_3, D(n, n)) \le 3n + 4$ if we take m = n. Furthermore, we will show $\widehat{\mathbf{r}}(P_3, D(n, n)) = 3n + 4$ for $n \ge 5$. For a maximum matching M of a graph F, we denote

$$V(M, n) = \{v \in V(F) \mid \deg(v) \ge n + 1 \text{ and } v \text{ covered by } M\}.$$

Then we have the following lemma and theorem.

$\widehat{\mathbf{r}}(P_3, D(n, n))$

Lemma 5

Let F be a graph with $e(F) \leq 3n+3$ and $\Delta(F) \geq n+1$, where $n \geq 5$. Let M be a maximum matching of F such that |V(M,n)| is maximized. For any two vertices u, v of degree at least n+1, if $uv \in E(F)$, then M covers both u and v.

Theorem 2.7

For $n \geq 5$,

$$\widehat{\mathbf{r}}(P_3, D(n, n)) = 3n + 4.$$

Skipping the proof.

$\widehat{\mathbf{r}}(P_3, D(1, n))$

Theorem $\overline{2.8}$

For $n \geq 4$,

$$\hat{\mathbf{r}}(P_3, D(1, n)) = n + 5.$$

Skipping the proof.

$\widehat{\mathbf{r}}(P_3, B(3, n))$

Theorem 2.9

For $n \geq 5$,

$$\hat{\mathbf{r}}(P_3, B(3, n)) = n + 6.$$

Upper bound of $\widehat{\mathbf{r}}(P_3, B(3, n))$ and $\widehat{\mathbf{r}}(P_3, B(4, n))$

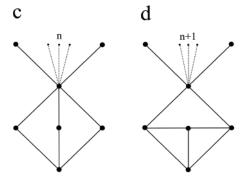


Figure 3: Graphs for Theorem 2.9 and Theorem 2.10.

Next we show $\widehat{\mathbf{r}}(P_3, B(3, n)) \ge n + 6$. Let F be a graph with at most n + 5. We can assume that e(F) = n + 5. Let s be the number of vertices of degree $\ge n + 1$.

Claim 6

$$s = 1$$
.

Proof.

Assume, to the contrary, that $s \ge 2$. Then there exist two vertices, say u_1, u_2 , such that $deg_F(u_i) \ge n+1$ for i=1,2, and hence there are at least $2(n+1)-1 \ge n+6 > e(F)$, since $n \ge 5$, a contradiction.

Assume $deg(v) = \Delta(F)$.

- $\Delta(F) \leq n$: no B(3, n) copy.
- $\Delta(F) = n + 1$: choose an edge e incident to v in F and color it red, and the other edges in F e are colored blue.
- $\Delta(F) \ge n+3$: color one edge which not incident v red, and the other edges blue.
- $\Delta(F) = n + 2$: need further discussion.

Suppose $\Delta(F) = n + 2$ and $\deg(v) = \Delta(F)$.

- $F v \not\cong K_3$ and $F v \not\cong K_{1,3}$: there is a $2P_2$ in F v, and we color $2P_2$ red, and the other edges of F are colored blue..
- $F v \cong K_3$: need further discussion.
- $F v \cong K_{1,3}$: need further discussion.

Suppose $F - v \cong K_3$ or $F - v \cong K_{1,3}$. Let $N(v) = \{v_i | 1 \le i \le n+2\}$. The center vertex of $K_{1,3}$ is denoted as u, and the other three degree vertices in $K_{1,3}$ are denoted as u_1 , u_2 and u_3 .

Since F is connected, $|N(v) \cap V(F-v)| \neq \emptyset$.

If $|N(v) \cap V(F-v)| = 1$, let $\{x\} = N(v) \cap V(F-v)$, then we color the edge vx red, the other edges in F blue. One can easily check that there is neither a red copy of P_3 nor a blue copy of B(3, n).

Case 1

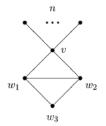
$$F-v\cong K_3$$

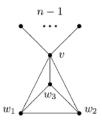
Subcase 1.1

If $|N(v) \cap V(F-v)| = 2$, then we color the edge vv_i $(v_i \in N(v))$ and $deg(v_i) = 1$ red, the other edges in F blue. Then $v(F-v_i) = n+3 < v(B(3,n))$, so there is neither a red copy of P_3 nor a blue copy of B(3,n).

Subcase 1.2

If $|N(v) \cap V(F - v)| = 3$, then v(F) = n + 3 < v(B(3, n)), which implies no B(3, n) copy.





Case 2

$$F-v \cong K_{1,3}$$

Subcase 2.1

If $N(v) \cap V(F-v) = \{u, u_1\}$, then we color the edges uu_2 and vv_i $(v_i \in N(v) \text{ and } \deg(v_i) = 1) \text{ red}$, the other edges in F blue. Then $v(F-u_2-v_i) = n+3 < v(B(3,n))$, so there is neither a red copy of P_3 nor a blue copy of P_3 .

Subcase 2.2

If $N(v) \cap V(F-v) = \{u_1, u_2\}$, then we color the edges uu_3 and vv_i $(v_i \in N(v) \text{ and } \deg(v_i) = 1) \text{ red}$, the other edges in F blue. Then $v(F-u_3-v_i) = n+3 < v(B(3,n))$, so there is neither a red copy of P_3 nor a blue copy of P(3,n).

Subcase 2.3

If $|N(v) \cap V(F-v)| = 3$, then we color the edge vv_i $(v_i \in N(v))$ and $deg(v_i) = 1$ red, the other edges in F blue. Then $v(F-v_i) = n+3 < v(B(3,n))$, so there is neither a red copy of P_3 nor a blue copy of B(3,n).

Subcase 2.4

If $|N(v) \cap V(F - v)| = 4$, then v(F) = n + 3 < v(B(3, n)), which implies no B(3, n) copy.

$\widehat{\mathbf{r}}(P_3, B(4, n))$

Theorem 2.10

For $n \geq 7$,

$$\hat{\mathbf{r}}(P_3, B(4, n)) = n + 8.$$

Skipping the proof.

Problem of $\widehat{\mathbf{r}}(P_3, B(m, n))$

A good upper and lower bound.

Problem 2.2

For
$$n \ge ?$$
, $m \ge ?$,

$$? \leq \widehat{\mathbf{r}}(P_3, B(m, n)) \leq ?.$$

Thank you for your attention!